### **CZ-1 DL Alzheimer's**

## **Software Test Plan and Software Test Report**

# CS 4850 - Sections 02 & 04 - Fall 2025 Sharon Perry October 26, 2025



Julia Johnson Developer



Jordan Rainford Developer

Software Test Plan Page 1 of 10

## **Table of Contents**

| 1. Overview                                      | 3  |
|--------------------------------------------------|----|
| 1.1. Purpose                                     | 3  |
| 1.2. Scope                                       | 3  |
| 2. Testing Summary                               | 3  |
| 2.1. Scope of Testing                            | 3  |
| 3. Analysis of Scope and Test Focus Areas        | 4  |
| 3.1. Release Content                             | 4  |
| 3.2. Regression Testing                          | 4  |
| 4. Progression Test Objectives                   | 5  |
| 5. Regression Test Objectives                    | 5  |
| 6. Test Strategy                                 | 6  |
| 6.1. Test level responsibility                   | 6  |
| 6.2. Test Type & Approach                        | 6  |
| 6.3. Facility, data, and resource provision plan | 6  |
| 6.4. Testing Tools                               | 7  |
| 6.5. Testing Metrics                             | 7  |
| 7. Assumptions and Dependencies                  | 7  |
| 7.1. Assumptions                                 | 7  |
| 7.2. Dependencies                                | 7  |
| 8. Software Testing Report                       | 8  |
| 9. Definitions                                   | 9  |
| 10. Points of Contact                            | 10 |

#### 1. Overview

#### 1.1. Purpose

The objective of this test plan is to validate that the Alzheimer's Diagnosis system meets the functional and non-functional requirements defined in the Software Design Documentation. Specifically, we aim to:

- Verify that the MRI images are correctly ingested, segmented, and normalized
- Confirm the chosen ML model can generate predictions with accuracy comparable to similar cutting-edge technologies, distinguishing confidently between AD, MCI, and NC
- Ensure the system runs efficiently and safely

#### 1.2. Scope

The scope of this project testing phase is bound by the following:

- Validate the data processing pipeline, check for any quality errors
- Test our python implementation of our model
- Evaluate for accuracy and efficiency
- Generate and verify classification matrices for each binary classification output

## 2. Testing Summary

### 2.1. Scope of Testing

### 2.1.1. In scope

The scope of this project's testing phase is primarily bound by the validation of the data processing pipeline, ensuring that all data is free from quality errors before ingestion. We will specifically test the Python implementation of our model, evaluating for both accuracy and computational efficiency, while also generating and verifying classification matrices for every binary classification output.

#### 2.1.2. Out of scope

Because this project focuses on the research and functional aspects of the technology rather than consumer-facing design, a graphical user interface (GUI) is considered out of scope for this testing phase. Since this program is designed to run on research computers with access to the internet, mobile applications are also out of scope for this project.

## 3. Analysis of Scope and Test Focus Areas

#### 3.1. Release Content

This release encompasses the complete CZ-1 Deep Learning Alzheimer's Diagnosis system, designed to aid researchers in staging Alzheimer's Disease (AD) progression. The content includes the full data preprocessing pipeline utilizing MATLAB scripts with SPM12 and CAT12 toolboxes for image segmentation and Region of Interest (ROI) extraction. It also delivers the Python-based machine learning suite, which contains implementations of five distinct models: Neural Network, K-Nearest Neighbors (KNN), Random Forest, Support Vector Machine (SVM), and Logistic Regression. Additionally, the release contains the consolidated dataset merging ADNI, AIBL, and OASIS3 source data into unified CSV formats for training and validation.

### 3.2. Regression Testing

Regression testing is required for this release to ensure that iterative improvements to the model parameters and preprocessing scripts do not negatively impact previously stable system functionalities and efficiencies. Regression tests must confirm that the data ingestion pipeline remains robust, successfully processing standard MRI formats (.nii) and generating valid CSV outputs without errors, ensuring that new code changes have not introduced regressions in the model performance.

# **4. Progression Test Objectives**

| Ref          | Function                                       | <b>Test Objective</b>                                                                                 | Evaluation Criteria                                                                                                                   | X-Ref | P    |
|--------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| SVM-01       | Support<br>Vector<br>Machine<br>Testing        | Determine if model is sufficient in<br>Accuracy, Specificity, Efficiency, and<br>F1-Score             | <ul> <li>Model Accuracy</li> <li>Model Specificity</li> <li>PCA Number</li> <li>Model Efficiency</li> <li>Confusion Matrix</li> </ul> | None  | High |
| AIBL-01      | Dataset<br>Alignment<br>and Quality<br>Testing | Determine if dataset contains high quality data which can be ingested easily into all ML models       | <ul><li>SPM Quality Score</li><li>Confusion Matrix</li><li>Model Accuracy</li></ul>                                                   | None  | Med  |
| ADNI-01      | Dataset<br>Alignment<br>and Quality<br>Testing | Determine if dataset contains high quality data which can be ingested easily into all ML models       | <ul><li>SPM Quality Score</li><li>Confusion Matrix</li><li>Model Accuracy</li></ul>                                                   | None  | Med  |
| OASIS-<br>01 | Dataset<br>Alignment<br>and Quality<br>Testing | Determine if dataset contains high<br>quality data which can be ingested<br>easily into all ML models | <ul><li>SPM Quality Score</li><li>Confusion Matrix</li><li>Model Accuracy</li></ul>                                                   | None  | Med  |
| ALL-01       | Dataset<br>Alignment<br>and Quality<br>Testing | Determine if dataset contains high quality data which can be ingested easily into all ML models       | <ul><li>SPM Quality Score</li><li>Confusion Matrix</li><li>Model Accuracy</li></ul>                                                   | None  | High |

# **5.** Regression Test Objectives

| Ref    | Function                                    | Test Objective                                                                                                                                    | Evaluation Criteria                                                                                                                   | X-Ref | Р   |
|--------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| SVM-02 | Support Vector<br>Machine Testing           | Determine if a previous<br>version (Version 8) of the<br>model is sufficient in<br>Accuracy, Specificity,<br>Efficiency, and F1-Score             | <ul> <li>Model Accuracy</li> <li>Model Specificity</li> <li>PCA Number</li> <li>Model Efficiency</li> <li>Confusion Matrix</li> </ul> | None  | Low |
| SVM-03 | Support Vector<br>Machine Testing           | Determine if a previous version (Version 9) of the model is sufficient in Accuracy, Specificity, Efficiency, and F1-Score                         | <ul> <li>Model Accuracy</li> <li>Model Specificity</li> <li>PCA Number</li> <li>Model Efficiency</li> <li>Confusion Matrix</li> </ul> | None  | Med |
| ALL-02 | Dataset Quality<br>and Alignment<br>Testing | Determine if a subset of<br>full dataset (ADNI-Oasis<br>only) contains high quality<br>data which can be<br>ingested easily into all ML<br>models | <ul><li>SPM Quality Score</li><li>Confusion Matrix</li><li>Model Accuracy</li></ul>                                                   | None  | Med |

## 6. Test Strategy

### 6.1. Test level responsibility

| Test Level             | Jordan | Julia |
|------------------------|--------|-------|
| Database Testing       | Р      | S     |
| Model Testing          |        | Р     |
| Data Ingestion Testing | S      | Р     |
| Final Model Testing    |        | Р     |

### 6.2. Test Type & Approach

| Test Type                | Objectives                                                                                                                                                                                                                                                       |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Progression Requirements | The objectives are to verify that the application:  - Meets the defined requirements; - Performs and functions accurately; - Correctly handles error conditions; - Interfaces function correctly; - Data load is successful.                                     |  |
| Regression testing       | The objectives are the following:  - Ensure adjustments made to the model do not negative impact performance  - Ensure integrated system maintains security and integrity  - Confirms that the end-to-end data processing is no affected by the model processing |  |

### 6.3. Facility, data, and resource provision plan

## 6.3.1. Testing Requirements

Testing will require access to the following materials:

- A computer with access to a Python Compiler / IDE, and sufficient RAM
- A storage device with access to the ADNI, AIBL, and Oasis3 Databases
- A resource with internet technologies understanding.

### 6.4. Testing Tools

The following tools were used for testing:

| Process             | Tool                  |
|---------------------|-----------------------|
| Test Case Creation  | Microsoft Word        |
| Test Case Tracking  | Microsoft Excel       |
| Test Case Execution | Python Compiler / IDE |
| Defect Management   | Microsoft Excel       |

### 6.5. Testing Metrics

We use the a combination of the following values to gauge success according to our tests:

- SPM Quality Score
- Confusion Matrix
- Model Accuracy
- Model Specificity
- PCA Number
- ROC Curves
- Model Efficiency

## 7. Assumptions and Dependencies

### 7.1. Assumptions

When testing, we will assume the following:

- The user has access to all datasets
- All datasets have been pre-processed through SPM and Cat12
- User is running the model on a sufficiently powerful computer

### 7.2. Dependencies

Our tests are dependent on the following:

- The user has a suitable computer
- Referenced pathways in the code have not been changed by the user

# **8. Software Testing Report**

| Requirement | Pass | Fail | Severity                                                   |
|-------------|------|------|------------------------------------------------------------|
| SVM-01      | Р    |      | Medium, met expectations (~70% accuracy)                   |
| AIBL-01     |      | F    | High, contained bad data points                            |
| ADNI-01     | P    |      | Medium, met expectations                                   |
| OASIS-01    | P    |      | Medium, met expectations                                   |
| ALL-01      | P    |      | Medium, met expectations                                   |
| SVM-02      |      | F    | Low, performed slightly below expectations (~65% accuracy) |
| SVM-03      | P    |      | Low, met expectations but missing cross validation         |
| ALL-02      | p    |      | Medium, met expectations (~70% accuracy)                   |

## 9. Definitions

The following acronyms and terms have been used through out this document

| Term/Acronym | Definition                                                  |  |
|--------------|-------------------------------------------------------------|--|
| SPM          | Statistical Parametric Mapping                              |  |
| SVM          | Support Vector Model                                        |  |
| ADNI         | Alzheimer's Disease Neuroimaging Institute                  |  |
| Oasis        | Open Access Series of Imaging Studies                       |  |
| AIBL         | Australian Imaging Biomarkers and Lifestyle Study           |  |
| PCA          | Principal Component Analysis, used to reduce dimensionality |  |
| CAT12        | MATLAB toolbox used for processing MRI images               |  |
| ROC          | Receiver Operating Characteristic                           |  |

# **10.** Points of Contact

The following people can be contacted in reference to this document

| Primary Contact    |                                |  |
|--------------------|--------------------------------|--|
| Name               | Julia Johnson                  |  |
| Title/Organisation | Kennesaw State University      |  |
| Phone              | 404-957-2715                   |  |
| Email              | Jjoh1175@students.kennesaw.edu |  |
| Secondary Contact  |                                |  |
| Name               | Jordan Rainford                |  |
| Title/Organisation | Kennesaw State University      |  |
| Phone              | 404-277-6285                   |  |
| Email              | jrainfor@students.kennesaw.edu |  |